

Aeronautics Technology Theme

Update on FY 2004 Budget to

Revolutionize Aviation Subcommittee Aerospace Technology Advisory Committee

Terrence J. Hertz
Director
Aeronautics Technology Division
Office of Aerospace Technology

February 25, 2003

Theme Objectives

Protect Air Travelers and the Public

Decrease the aircraft fatal accident rate and the vulnerability of the air transportation system to threats and mitigate the consequences of accidents and hostile acts.

Protect the Environment

Protect local and global environmental quality by reducing aircraft noise and emissions.

Increase Mobility

Enable more people and goods to travel faster and farther, with fewer delays

Protect the Nation

Enhance the Nation's security through aeronautical partnerships with DOD and other government agencies.

Explore Revolutionary Aeronautical Concepts

Pioneer novel aerospace concepts to support Earth and space science missions.

Theme Objectives

Protect Air Travelers and the Public

Protect the Environment

Increase Mobility

Protect the Nation

Explore New Aeronautical Missions

Programs

Aviation Safety & Security

Airspace Systems

Vehicle Systems

Budget

4	. 1000	ile.		1
			1	
A	4	Z	J	ı
1	9	, 1000 1	À	ľ

	BAU			Full	Cost		
	FY 03	FY 03*	FY 04	FY 05	FY 06	FY 07	FY 08
Aeronautics Technology	541.4	949.2	959.1	932.2	938.7	933.8	916.4
Aviation Safety & Security	95.0	156.2	168.5	188.4	175.2	178.2	170.9
Airspace Systems	125.1	188.4	217.1	158.0	172.1	183.9	176.0
Vehicle Systems	321.3	604.6	573.6	585.8	591.4	571.7	569.5

FY 2004 President's Budget

(\$ Millions)	FY 03 BAU	FY 03*	FY 04	FY 05	FY 06	FY 07	FY 08
	<u>541.4</u>	949.2	<u>959.1</u>	932.2	938.7	933.8	<u>916.4</u>
Aviation Safety & Security	95.0	156.2	168.5	188.4	175.2	178.2	170.9
Vehicle Safety Technologies	49.8	83.9	74.5	81.5	-	-	-
System Safety Technologies	24.3	31.6	31.1	20.7	-	-	-
Weather Safety Technologies	20.9	40.7	42.3	42.5	-	-	-
Integrated Intelligent & Intuitive Safety Technologies & Sys	-	-	-		117.5	119.8	126.2
Aviation Security Technologies	-	-	20.6	43.7	57.7	58.4	44.7
Vehicle Systems	321.3	604.6	573.5	585.8	591.4	571.7	569.5
Quiet Aircraft Technology (QAT)	20.0	41.4	60.2	71.0	74.0	25.0	-
21st Century Aircraft Technology (TCAT)	29.0	46.0	42.0	42.5	42.1	-	-
Flight Research	58.9	91.4	85.4	43.3	10.5	-	-
ERAST	[20.0]						
Advanced Vehicle Concepts	34.7	72.5	41.0	49.7	-	-	-
Hyper-X	[27.0]						
Breakthrough Vehicle Technologies	61.9	124.2	115.3	115.9	143.1	-	-
Ultra-Efficient Engine Technology (UEET)	50.0	87.8	90.0	88.1	91.0	-	-
Propulsion & Power	66.8	141.3	139.6	125.1	31.0	-	-
Clean Adaptive Vehicle Systems	-	-	-	50.2	199.7	546.7	569.5
Airspace Systems	125.1	188.4	217.1	158.0	172.1	183.9	176.0
Advanced Air Transportation Technology (AATT)	71.6	103.5	105.6	-	-	-	-
Small Aircraft Transportation System (SATS)	20.0	29.2	30.6	9.9	-	-	-
Virtual Airspace Modeling & Simulation (VAMS)	23.0	35.3	33.3	33.0	35.0	34.0	-
Aviation Operations Systems	10.5	20.4	20.6	19.3	12.3	-	-
NASA Exploratory Technologies for the NAS (NExTNAS)	-	-	27.0	95.8	124.8	149.9	176.0

^{*}FY 2003 reflects estimated Full Cost

2/25/03 5

Budget Definitions

Business as Usual vs. Full Cost

- Business as Usual (BAU) equates to direct R&D costs (including program support)
- Full Cost equates to BAU plus other costs previously budgeted under
 - Research & Program Management including civil service workforce and travel
 - Other institutional infrastructure costs such a Research Operations Support
- Full cost includes
 - direct procurements
 - direct civil service workforce, benefits, and travel
 - Service Pools
 - Center G&A
 - Corporate G&A

Major Changes FY 03 - FY 04

Aeronautics Technology	FY 03*	FY 04	<u>Delta</u>	<u>Explanation</u>
<u>Total</u>	<u>949</u>	<u>959</u>	<u>10</u>	
Aviation Safety & Security	156	168	12	 New Initiative for Aviation Security Augmentation (+21M) Vehicle Safety Technologies (Synthetic Vision and Crashworthiness) (-9M)
Airspace Systems	188	217	29	 Accelerate Next Generation NAS Technologies (NExTNAS) (+27M) VAMS planned project ramp-down (-2M) SATS planned project ramp-up (+2M) AATT planned project ramp-up (+2M)
Vehicle Systems	605	574	-31	 X-43A concludes (-27M) ERAST Concludes (-20M) Other Advanced Vehicle Concepts (-5M) Breakthrough Vehicle Technology Projects (-9M) Other Planned Project Ramp-up (+3M) QAT: Increase funding for maturation of noise technologies (+19M) Initiate UAV in NAS Technologies (+8M)

2/25/03 7

Major Changes FY 03 - FY 04

Aeronautics Technology	FY 03*	FY 04	<u>Delta</u>	<u>Explanation</u>
<u>Total</u>	<u>949</u>	<u>959</u>	<u>10</u>	
Aviation Safety & Security	156	168	12	 New Initiative for Aviation Security Augmentation (+21M) Vehicle Safety Technologies (Synthetic Vision and Crashworthiness) (-9M)
Airspace Systems	188	217	29	 Accelerate Next Generation NAS Technologies (NExTNAS) (+27M) VAMS planned project ramp-down (-2M) SATS planned project ramp-up (+2M) AATT planned project ramp-up (+2M)
Vehicle Systems	605	574	-31	 X-43A concludes (-27M) ERAST Concludes (-20M) Other Advanced Vehicle Concepts (-5M) Breakthrough Vehicle Technology Projects (-9M) Other Planned Project Ramp-up (+3M) QAT: Increase funding for maturation of noise technologies (+19M) Initiate UAV in NAS Technologies (+8M)

Aviation Safety and Security

Vehicle Safety Technologies

- Make every flight the equivalent of clear-day operations
- Self-healing designs and "refuse-to-crash" aircraft
- Increases survivability when accidents and aviation fires occur

Weather Safety Technologies

- Brings intelligent weather decision-making to every cockpit
- Eliminate icing as an aviation hazard

System Safety Technologies

- Monitor and assess all data from every flight for known & unknown issues
- Improves human/machine integration in design, operations, & maintenance
- Applies aerospace technology to search and rescue needs

Aviation Security

- Secure and protect the aircraft
- Harden the National Airspace System
- Increase effectiveness of aviation info screening
- Integrate advanced sensors throughout the system

Aviation Safety and Security

Major Changes FY 03 - FY 04

- Initiate Aviation Security in FY 2004 (+\$21M)
- Adjustments to Aviation Safety activities
 - Synthetic vision (-\$4.0M) progressing according to plan, however industry application faster than anticipated and so further technology maturity became unnecessary
 - Redirect relevant System-wide Accident Prevention (-\$.5M) activities to Security focus
 - Reduced Crashworthiness (-\$4.0M) activities based on programwide priorities

Aviation Security

Project Objectives

Airspace Operation Systems – Harden the National Airspace System

Aircraft & Systems
Hardening – Secure and
protect the aircraft

Information Screening – Increase effectiveness of aviation information screening

Sensors – Integrate advanced sensors throughout the system

2/25/03

Airports

Airspace

Aircraft

Aviation Security

Technical Description

Aircraft & Systems Hardening

- Light-weight hardening of structures/systems against explosive or
- Systems to enable safe landing of damaged aircraft

electromagnetic threats

 Systems to ensure aircraft cannot be flown into terrain or buildings

Airspace Operation Systems

 Air traffic control tools to detect rogue aircraft and provide emergency response data

Information Screening

- Real-time multi-database integration and fast, accurate data-mining tools
- Web-based system for collecting security problems from aviation system users

Sensors

 Small, fast, and accurate biological and explosive detection technologies for aviation applications

Aviation Security Systems Analysis

←

Operational concept for secure, next-gen National Airspace
Threat identification and prioritization for aviation system

Major Changes FY 03 - FY 04

Aeronautics Technology	FY 03*	FY 04	<u>Delta</u>	<u>Explanation</u>
<u>Total</u>	<u>949</u>	<u>959</u>	<u>10</u>	
Aviation Safety & Security	156	168	12	 New Initiative for Aviation Security Augmentation (+21M) Vehicle Safety Technologies (Synthetic Vision and Crashworthiness) (-9M)
Airspace Systems	188	217	29	 Accelerate Next Generation NAS Technologies (NExTNAS) (+27M) VAMS planned project ramp-down (-2M) SATS planned project ramp-up (+2M) AATT planned project ramp-up (+2M)
Vehicle Systems	605	574	-31	 X-43A concludes (-27M) ERAST Concludes (-20M) Other Advanced Vehicle Concepts (-5M) Breakthrough Vehicle Technology Projects (-9M) Other Planned Project Ramp-up (+3M) QAT: Increase funding for maturation of noise technologies (+19M) Initiate UAV in NAS Technologies (+8M)

Airspace Systems Projects

AATT Project '96-'04

Improve gate-to-gate air traffic management to increase capacity & flexibility

VAMS Project '02-'06

Explore advanced concepts & model/simulate the NAS

NExTNAS Project '04-'08

Technologies to enable future conops for a more flexible & efficient NAS

SATS Project '01-'05

Improve public mobility & community access with small aircraft/airports

AOS Project '00-'06

Understand & model human/systems

Airspace Systems

Major Changes FY 03 - FY 04

 Initiate NASA Exploratory Technologies for the National Airspace System (NExTNAS) in FY 2004 (+\$27M)

FAA Interactions

NASA Administrator

OGA Administrators

FAA Administrator

Global Memorandum of Understanding (to be updated)

ATAC

FAA/NASA Executive Committee

Jerry Creedon

Charlie Keegan

JOINT PROGRAM OFFICE

Aviation Safety Joint Working Group

Terry Hertz

Jim Jones

Interagency Integrated Product Team (AATT)

Bob Jacobsen

Greg Burke

7 Memoranda of Understanding

24 Related Memoranda of Agreement

NASA Role

NASA Exploratory Technologies for the NAS

Develop and Demonstrate exploratory technologies to enable a future airspace system capable of meeting growth in passenger demand beyond 2010

Space-Based Communications & Surveillance

- Next generation CNS technologies
- CNS system interoperability

Wake Vortex Avoidance

 WV-Sensitive Procedures 2/25/03Active Avoidance System

System-Wide Information **Management**

Technologies to enable a single information network for data sharing among the users of the NAS

Dynamic Airborne Procedures

- Distributed air ground technologies
- Decision support tools

ATM Automation Technology from VAMS OpsCons

NextNAS concept definition and evaluation

Major Changes FY 03 - FY 04

Aeronautics Technology	FY 03*	FY 04	<u>Delta</u>	<u>Explanation</u>
<u>Total</u>	<u>949</u>	<u>959</u>	<u>10</u>	
Aviation Safety & Security	156	168	12	 New Initiative for Aviation Security Augmentation (+21M) Vehicle Safety Technologies (Synthetic Vision and Crashworthiness) (-9M)
Airspace Systems	188	217	29	 Accelerate Next Generation NAS Technologies (NExTNAS) (+27M) VAMS planned project ramp-down (-2M) SATS planned project ramp-up (+2M) AATT planned project ramp-up (+2M)
Vehicle Systems	605	574	-31	 X-43A concludes (-27M) ERAST Concludes (-20M) Other Advanced Vehicle Concepts (-5M) Breakthrough Vehicle Technology Projects (-9M) Other Planned Project Ramp-up (+3M) QAT: Increase funding for maturation of noise technologies (+19M) Initiate UAV in NAS Technologies (+8M)

Vehicle Systems

Environmentally Friendly Aircraft

Noise within Airport Boundaries Smog Free No Impact on Global Climate

Superior Air Power
Technological Superiority
Partners in Freedom

Air Vehicles for Public Mobility

Anywhere Anyone Anytime

New Aeronautical Missions

Science Platforms
Flight in Hazardous Environments

Vehicle Systems

Major Changes FY 03 - FY 04

- Augment Quiet Aircraft Technology project (\$19M) to raise technical maturity to improve technology transfer
- Initiate Unmanned Aerial Vehicle in the National Airspace System (\$8M) to enable more routine access (Flight Research subproject)
- Conclude ERAST (-\$20M) and Hyper-X (-\$27M)
- Terminate planned follow-on Advanced Vehicle Concepts subprojects (-\$5M)
 - Configuration research to reduce sonic boom of supersonic air vehicles
 - Configuration research of blended wing body transports
- Breakthrough Vehicle Technologies (-\$9M)
 - Terminate next generation flight deck and delay development of nanomaterials

2/25/03 21

Quiet Aircraft Technology

Augmented Project

Unmanned Aerial Vehicles (UAVs) in the NAS

UAV's provide sensing and communications platforms for dull, dirty and dangerous mission.

National Security

Homeland Security
Pipeline, Power-line, & critical infrastructure monitoring
Law Enforcement, Regulatory Agency Support
Low Cost Telecom Market
Commercial Imaging

Quality of Life

Real-time Disaster Management
Marine Fisheries Monitoring
Hurricane Reconnaissance
Search and Rescue
Fire/HAZMAT Monitoring
Earth Resources Mgmt

UAV in the NAS Objective: Develop and demonstrate technologies required for routine, safe, secure, and efficient high-altitude, long-endurance unmanned aerial vehicle operations in the National Airspace System

UAV in the NAS

Subprojects

Technology Development

Detect See & Avoid Systems

Over the Horizon Communication Systems

Develop specific technologies identified in the systems analysis studies that enable project goals

Develop air traffic control procedures and air traffic management decision support tools to facilitate unmanned aerial vehicles operations

Develop ground control station display / command guidelines

Simulation and Demonstration

High Fidelity Simulations

Flight Demonstrations

Validate specific technologies in simulation

Establish traffic impact assessments through Monte-Carlo methods

Demonstrate ability to operate safely in the National Airspace System utilizing technology and procedures developed

Unmanned Aerial Vehicles in the National Airspace System Initiative

Interim Milestone

Routine Operations above FL 400 FY '06

Project Goal

Routine Operations above FL 180 by FY '08

2/25/03 25

Unmanned Aerial Vehicles in the National Airspace System Initiative

Interim Milestone

Routine Operations above FL 400 FY '06

Project Goal

Routine Operations above FL 180 by FY '08

Routine Access

Unrestricted flight from all airports

Summary

- Making satisfactory progress toward aeronautics goals
- Changes reflect changing environment
 - Aviation security
 - New missions for UAVs
 - Technologies for the airspace system after next
- Ensuring technology transfer

Opportunities

- Larson Bill (House Bill 586) / Allen Bill (Senate Bill 309)
 - Subsonic transports
 - Supersonic transports
 - Rotorcraft
 - Aviation Weather Research
 - Air Traffic Management
- Joint Program Office
- Expanded definition of public good with respect to mobility
 - Ticket price